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Abstract

The main focus of this paper is on the study and application of existing methodology on unknown input observer (UIO) for on-line diagnosis
of faults on input actuators, output sensors, model parameters and disturbances of complex chemical plants operating under model predictive
control (MPC). Two industrial systems are studied by simulation: styrene polymerization reactor and fluid catalytic cracking (FCC) unit. For
each of these cases, the development of the method is presented and the design of the fault diagnosis system is discussed. In the first case, a
bank of reduced-order UIOs is used for fault diagnosis of process parameters and external disturbances. The design is based on the rigorous
first principles model of the polymerization process. In the second case, a single bank of full-order UIOs is used for sensor and actuator fault
diagnosis based on an input–output linear model of the FCC unit. In both cases, extensive simulation results are presented and discussed.
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. Introduction

The size and complexity of modern industrial plants have
ed to the adoption of MPC as the standard control solu-
ion for most processes. At the same time, the integration
f large process plants in a single centralized MPC con-

roller has increased the vulnerability of these systems to
bnormal occurrences, which can significantly degrade the
erformance of the overall control system. Frequently, the
PC system will hide a gradual incident until the control

ailure becomes unavoidable. In other cases, the multivariable
haracter of the MPC controller can amplify a local incident
hat is propagated to the whole process system resulting in a
remature plant shutdown. Therefore, an important issue to
chieve high performance, efficiency, reliability and safety
f large scale processes is to supervise the centralized MPC
ontroller, i.e. to diagnose faults in the control system while
he plant is still operating in a controllable region.

As any control strategy, MPC is usually vulnerable to mal-
unctioning of sensors and actuators, which can be considered
s additive faults. For example, a biased sensor may lead

the process to an operating point far from the optimal
and can cause saturation of a manipulated valve. More
sensor faults make the plant partially unobservable, w
actuator faults make the plant partially uncontrollable.
supervisory system may help MPC to deal with these ab
mal situations. In this sense, the fault diagnosis system
be seen as part of a larger strategy for optimal process co

The fault diagnosis area has grown as an active res
topic for more than 30 years. Extensive reviews of diffe
fault diagnosis methods can be found in the litera
[1–7]. Existing methods can be grouped into three gen
categories: quantitative model-based methods, quali
model-based methods and data-driven methods. Our in
is on the class of quantitative model-based techniq
namely observer-based approach, parameter estim
approach and parity-space approach, which have rec
considerable attention in recent years. These approach
based on the concept of analytical or functional redunda
which makes use of a mathematical model of the proce
obtain behavior estimates. The inconsistencies betwee
estimated and actual behavior are symptoms or fault in
tors. They are called residuals and may reflect the abno
∗ Corresponding author. Tel.: +55 11 30912237; fax: +55 11 38132380.
E-mail addresses:oscar@pqi.ep.usp.br (O.A.Z. Sotomayor),

dloak@usp.br (D. Odloak).

situation of the supervised process. Later, the residuals are
evaluated aiming at to localize the fault. Although there is
a close relationship among the quantitative model-based
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techniques, observer-based approach have become the most
popular and important method for model-based fault diagno-
sis[8,9], especially within the automatic control community.

We do not find in the literature a significant number of
applications of observers for fault diagnosis in chemical pro-
cesses of industrial relevance[10] use the unknown input
observer (UIO) in a continuous stirred tank reactor (CSTR),
while [11,12] apply the extended Kalman filter (EKF) in a
two-tank system and a fluid catalytic cracking (FCC) unit,
respectively. A common feature in these works is that the
fault diagnosis is performed in processes operating in open
loop. However, most chemical processes operate in closed-
loop, and the control action, due to the feedback, may affect
the fault diagnosis system in detriment of its performance.
There are a few papers dealing with monitoring of processes
operating under conventional regulatory control, e.g. see[13]
that use the EKF in a binary distillation column[14] that
apply the generalized Luenberger observer (GLO) in a pre-
heating tank and[15] that use the EKF in an exothermic
CSTR. However, we could not find studies on the use of
observer-based fault diagnosis systems in processes operat-
ing under advanced control, namely model predictive control
(MPC).

The basic idea of this paper is to show the application
and to evaluate the practical feasibility of UIO for on-line
fault diagnosis in complex chemical plants operating under
M oly-
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Fig. 1. Scheme of a linear observer for residual generation.

diagnosis system is normally carried out following a three-
stage procedure.

2.1. Residual generation

This is the core element of a fault diagnosis system. It con-
sists in estimating the process output by using either a Luen-
berger observer in a deterministic setting or a Kalman filter
in a stochastic setting. The estimation error (or innovation
in the stochastic case) is defined as the residual. Observer-
based fault detection makes use of the disturbance decoupling
principle, in which the residual is computed assuming the
decoupling of the effects of faults on different inputs. For the
purpose of fault isolation, it is also assumed that the effect of
a fault is decoupled from the effects of other faults. A way to
achieve this is by using the so-called unknown input observer
(UIO) or unknown input filter (UIF) for the deterministic
or stochastic cases, respectively Patton and Chen (1997)
[8].

The basic idea of a linear observer-based residual gener-
ator is illustrated inFig. 1. The observer consists of a model
parallel to the process with a feedback of the output estima-
tion error,ey(t) = y(t) − ŷ(t).

In Fig. 1, u and y denote the input and output vectors,
respectively,f the vector of faults to be detected andd is
the vector of unknown inputs, to which the detection system
s of
e r
g the
r

2

f a
f plied
a rong
PC. Two industrial systems are studied: the styrene p
erization reactor and the FCC reactor–regenerator uni
pplication of UIOs to such systems is not trivial and th
re some challenges in the design of a diagnosis system

s able to achieve a satisfactory performance. In the first
bank of reduced-order UIOs is used for process para

ault and external disturbance diagnosis based on the
arized model of the polymerization process. In the se
ase, a single bank of full-order UIOs is used for senso
ctuator fault diagnosis based on a linear model obtained

nput–output data of the FCC unit. The paper is organize
ollows. Section2 presents preliminary concepts related
bserver-based fault diagnosis systems. Section3 describe

he full and a reduced-order UIO for fault detection purpo
he description of the UIO versions, as presented here,
t a better understanding and comprehension of this su
y the reader in order to facilitate the practical impleme

ion. Section4 presents the application of the fault diagno
o the styrene polymerization reactor and Section5 discusse
similar application to an industrial FCC unit. Finally, c

lusions are reported in Section6.

. Observer-based fault diagnosis

Fault diagnosis is usually performed to accomplish on
ore of the following tasks: fault detection (or monitoring)

ndicate the fault occurrence; fault isolation, to determine
xact location of the fault and fault identification, to estim
he fault magnitude. The design of an observer-based
hould be insensitive. Variable ˆy corresponds to the vector
stimated outputs,r the residual vector andK is the observe
ain. To provide useful information for fault diagnosis,
esidual should be defined in such a way that

r(t) = 0 (or r(t) ≈ 0), if f (t) = 0 (fault-free case),

r(t) �= 0, if f (t) �= 0 (faulty case)

.2. Residual evaluation

The residual is examined in terms of the likelihood o
ault, and a logical decision-making process is then ap
iming at to decide if the fault has occurred and avoid w
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decisions, such as false alarm and fault ignored. There are
several decision-making methods, but they all end in a simple
binary decision variableSr, where it is used a fixed or adaptive
thresholdT(t) on a residual evaluation functionJ(r(t)):

J(r(t)) ≤ T (t), for f (t) = 0 thenSr = 0 (fault-free case),

J(r(t)) > T (t), for f (t) �= 0 thenSr = 1 (faulty case)

2.3. Fault analysis

Consists in determining the magnitude and time-variant
behavior of the fault. This subject itself has not gained enough
research attention, but it can be of crucial importance if con-
trol reconfiguration is required.

3. Fault detection with unknown input observers

The unknown input observer (UIO) is a generalization
of the Luenberger observer, which is here designated as the
unknown input fault detection observer (UIFDO). In this sec-
tion, two linear versions of UIFDO, the full-order and the
reduced-order, are detailed.

Considering that malfunctioning can be caused by faults
on plant components as sensors and actuators or by unknown
d mod
i
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estimation error (ex = x − x̂) and the residual are defined by

ex(k + 1) = (A − HCA − K1C)ex(k)

+ ((A − HCA − K1C) − F )z(k)

+ ((I − HC) − T )Bu(k)

+ ((A − HCA − K1C)H − K2)y(k)

+ (I − HC)E1f1(k) + (I − HC)E2f2(k) (3)

r(k) = y(k) − Cx̂(k) = (I − CH)y(k) − Cz(k) (4)

If the following relationships are true:

T = I − HC, TE1 = 0, F = TA − K1C,

K2 = FH, K12 = K1 + K2 (5)

then Eq.(3) becomes

ex(k + 1) = Fex(k) + TE2f2(k) (6)

If the eigenvalues ofF are stable and assumingf2 = 0, ex
will approach zero asymptotically, i.e. ˆx → x, and, therefore,
r(k) =Cex(k). This means that, the residual defined in(4) will
be insensitive to the faults represented inf1.

Assuming that the conditions defined in(5) hold true, a
particular solution to the fault detection problem in terms of
m

H

w . The
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o
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isturbances, we represent the process by a state-space
n the following form:

(k + 1) = Ax(k) + Bu(k) + Ef (k), y(k) = Cx(k)

(1)

herex ∈Rn×1 is the state,u ∈Rm×1 the input,y ∈Rl×1 the
utput,f ∈Rg×1 the fault (including disturbances) andk is

he discrete sampling instant.A ∈Rn×n is the system matrix
∈Rn×m the input matrix,C ∈Rl×m the output matrix an
∈Rn×g the fault distribution matrix, which is assumed

e known. For the purpose of fault isolation, vectorf is par-
itioned intof≡ [f1f2]T, wheref1 contains the faults that w
ot be detected by the fault detector andf2 contains the fault

hat will be monitored by the fault detection system. A
atrixE is partitioned intoE≡ [E1E2].

.1. Full-order UIFDO

Following[16], a full-order UIFDO that decouplesf1 from
he rest of system(1) has the following form:

(k + 1) = Fz(k) + TBu(k) + K12y(k),

ˆ(k) = z(k) + Hy(k) (2)

herez ∈Rn×1 is the state of the UIFDO, obtained by the
ar transformationz=Tx, andx̂ is the estimated state vect
hilst F, T, K andH are matrices that will be designed su

hat the unknown input will be decoupled from other inp
nd certain design requirements will be attended. The
el
atrixH is given by[16]:

= E1(CE1)+ (7)

here (+) denotes the Moore–Penrose pseudo-inverse
ollowing theorem states the existence conditions for the
rder UIFDO.

heorem 3.1. The necessary and sufficient conditions
he existence of a full-order UIFDO for the system define
1) are [16]:

(i) rank(CE1) = rank(E1),
ii) (C, TA) is a detectable pair.

.2. Reduced-order UIFDO

Full-order observers, as presented in Section3.1, allow
he estimation of the whole state vector. However, in m
pplications, to know all the components of the state ma
e really necessary or not even possible as when conditio

n Theorem 3.1is not attended. This may happen when
inear state space model is obtained by linearizing a com
onlinear model of large dimension. In this case, if the ob
ation of only a part or a linear combination of the state
ufficient for residual generation, the solution to the obse
roblem can be obtained under less restrictive existence
itions than those imposed by the full-order observer. Se
pproaches to the design of the reduced-order UIFDO
een proposed in the literature. Here, we follow the meth
ou and M̈uller [17], to produce a reduced-order UIFDO
ecouplef1 from other faults in system(1). For this purpose
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consider the non-singular transformation matrixT = UT
1 ,

whereU1 is obtained from the singular value decomposi-

tion (SVD) of E1, i.e. E1 = U1

[
Σ1

0

]
V T

1 . Thus, applying

the state transformationz=Tx to system(1) results:

z(k + 1) = TAT −1z(k) + TBu(k) + TE1f1(k) + TE2f2(k),

y(k) = CT −1z(k) (8)

Consider now the following partitions:

z(k) =
[

z1(k)

z2(k)

]
, TAT −1 =

[
A11 A12

A21 A22

]
,

TB =
[

B1

B2

]
, CT −1 = [

C1 C2
]
,

TE1 =
[

E11

0

]
, TE2 =

[
E21

E22

]

The transformed system can be separated in two subsys-
tems as follows:

z

z

y

ted
b 2
i of
f 1 is
c struct
a to

s
a ut
t 2
c r
a

i

A
r

y

Consider now the partitions:

y∗(k) =
[

y∗
1(k)

y∗
2(k)

]
, UT

2 C2 =
[

C21

C22

]

Then, the transformed output defined in(12)can be written
as follows:

y∗
1(k) = Σ2V

T
2 z1(k) + C21z2(k) (13)

y∗
2(k) = C22z2(k) (14)

Next, substitutez1(k) from (13) into (10). The modified
subsystem 2 is given represented by

z2(k + 1) = (A22 − A21(Σ2V
T
2 )

+
C21)z2(k) + B2u(k)

+ A21(Σ2V
T
2 )

+
y∗

1(k) + E22f2 (15)

y∗
2(k) = C22z2(k) (16)

Finally, with the assistance of a Luenberger observer, a
residual generator for(15)–(16)can be written as follows:

ẑ2(k + 1) = Ā22ẑ2(k) + B2u(k) + A21(Σ2V
T
2 )

+
y∗

1(k)

+ K(y∗
2(k) − C22ẑ2(k)) (17)

r ∗

w
g

t er of
t

rder
U ns.

T the
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R
u tems
w ber
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n

R
e odes
o ilized
b r
c trices
F

to
t lytic
1(k + 1) = A11z1(k) + A12z2(k) + B1u(k)

+ E11f1(k) + E21f2(k) (9)

2(k + 1) = A21z1(k) + A22z2(k) + B2u(k) + E22f2(k)

(10)

(k) = C1z1(k) + C2z2(k) (11)

From Eq.(9), we observe that subsystem 1 is affec
y both f1 and f2, while Eq. (10) shows that subsystem

s affected only byf2 and consequently is independent
1. Under the assumption that the state of subsystem
omputed using the output measurement, we can con
n observer-based residual generator that is insensitivef1.

If C1 is of full rank,z1(k) can be eliminated from(10) by
ubstitutingz1(k) obtained in(11). ConsideringC⊥

1 the left
nnihilator ofC1, i.e.C⊥

1 C1 = 0, and by applying the outp
ransformationy∗

2 = C⊥
1 y to (11), a modified subsystem

an be obtained. Otherwise, ifC1 is not of full rank, conside
non-singular transformation matrixT1 = UT

2 , such thatU2

s obtained from the SVD ofC1, i.e. C1 = U2

[
Σ2

0

]
V T

2 .

pplying the output transformationy* =T1y to (11)
esults

∗(k) = UT
2 y(k) =

[
Σ2

0

]
V T

2 z1(k) + UT
2 C2z2(k) (12)
(k) = y2(k) − C22ẑ2(k) (18)

hereĀ22 = A22 − A21(Σ2V
T
2 )

+
C21.

The observer gainK in Eq.(17)can be obtained followin
he usual pole placement approach. Notice that the ord
he UIFDO described above is (n−nf ), wherenf = rank(E1).

It is easy to verify that in the design of the reduced-o
IFDO we need to satisfy the following existence conditio

heorem 3.2. Necessary and sufficient conditions for
xistence of a reduced-order UIFDO for the system de
y (1) are [17]:

(i) rank(CE1)= rank(E1),
ii)

(
C22, Ā22

)
is a detectable pair.

emark 2.1. In Theorems 3.1 and 3.2, condition (i) is
sually assumed in the observer design for linear sys
ith unknown inputs. It means that the maximum num
f unknown inputs that can be decoupled is limited to
umber of independent measurements.

emark 2.2. In Theorems 3.1 and 3.2, condition (ii) is
quivalent to the condition that all the non-observable m
f the system are stable. The remaining modes are stab
y gainK1, in the full-order case, andK in the reduced-orde
ase, that are chosen to stabilize the system dynamic ma
and (Ā22 − KC22), respectively.

Next, we illustrate the application of UIO systems
he styrene polymerization reactor and to the fluid cata
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cracking (FCC) unit. In both cases, we assume that the pro-
cess is operating under MPC control. In the polymerization
reactor, the objective of the fault diagnosis system is to super-
vise faults on a process parameter and external disturbances.
In the FCC system the objective is to supervise the mal-
functioning of actuators (inputs) and sensors (outputs) of the
centralized control system.

4. Styrene polymerization reactor

The polymerization reactor is usually the heart of the poly-
mer production process and its operation may be difficult as
it involves exothermic reactions, unknown reaction kinetics
and high viscosity. Furthermore, in case that the process is
not working as it should be, it can be very difficult to tell
which factor is responsible for the abnormality. Besides, the
impossibility to purify products that are out of specification
makes a proper fault diagnosis system very useful to this kind
of process[18].

4.1. Dynamic process model

Here, we consider the industrial process described by[19],
for free-radical solution polymerization of styrene in a jack-
e n in
F

oly-
m ne
r

Fig. 2. Process diagram of the styrene polymerization reactor.

d[Tc]

dt
= Qc(Tcf − Tc)

Vc
+ hA

ρcCpcVc
(Te − Tc) (22)

dD0

dt
= 0.5kt[P ]2 − QtD0

V
(23)

dD1

dt
= Mmkp[M][P ] − QtD1

V
(24)

η = 0.0012(Mw)0.71 (25)

where Mw = D1/D0, [P ] = [2fiki[I]/kt ]0.5, kj =
Aj exp(−Ej/Te), j = i, p, t, Qt = Qi + Qs + Qm.

Output of Eq.(25) is included in the model to simulate
the measurement of the intrinsic viscosity (η) instead of the
average molecular weight (Mw), which is rarely available
on-line. For the set of parameters presented inTable 1, the
reactor has three steady states, but it is designed to operate
at the steady state that produces the highest conversion. The
operational conditions corresponding to this steady state are
listed inTable 2.

T
P

V Tag Value

F Ai 2.142× 1017

A
F ol h)
A
F l h)
A
I
H
M
O
M L)
D l/K L)
ted CSTR. A schematic diagram of this process is show
ig. 2.

Assuming the standard mechanism for free-radical p
erization[19] presented the following model for the styre

eactor:

d[I]

dt
= (Qi[If ] − Qt[I])

V
− ki[I] (19)

d[M]

dt
= (Qm[Mf ] − Qt[M])

V
− kp[M][P ] (20)

d[Te]

dt
= Qt(Tf − Te)

V
+ (−#Hr)

ρCp
kp[M][P ]

− hA

ρCpV
(Te − Tc) (21)

able 1
rocess parameters for the polymerization reactor

ariable description

requency factor in Arrhenius equation for initiation reaction (h−1)
ctivation energy for initiation reaction (K)
requency factor in Arrhenius equation for propagation reaction (L/m
ctivation energy for propagation reaction (K)
requency factor in Arrhenius equation for termination reaction (L/mo
ctivation energy for termination reaction (K)

nitiator efficiency
eat of polymerization reaction (cal/mol)
onomer molecular weight (g/mol)
verall heat transfer coefficient× heat transfer area of CSTR (cal/K h)
ean density of reactor fluid× mean heat capacity of reactor fluid (cal/K
ensity of cooling jacket fluid× heat capacity of cooling jacket fluid (ca
Ei 14897
Ap 3.816×1010

Ep 3557
At 4.50× 1012

Et 843
fi 0.6
−#Hr 16700
Mm 104.14

hA 2.52× 105

ρCp 360
ρcCpc 966.3
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Table 2
Steady-state operational condition for the polymerization reactor

Variable description Tag Value

Flowrate of solvent (L/h) Qs 459
Flowrate of monomer (L/h) Qm 378
Reactor volume (L) V 3000
Volume of cooling jacket (L) Vc 3312.4
Temperature of reactor feed (K) Tf 330
Inlet temperature of cooling jacket

fluid (K)
Tcf 295

Concentration of initiator in feed
(mol/L)

[If ] 0.5888

Concentration of monomer in feed
(mol/L)

[Mf ] 8.6981

Concentration of initiator in reactor
(mol/L)

[I] 6.6832× 10−2

Concentration of monomer in reactor
(mol/L)

[M] 3.3245

Temperature of cooling jacket fluid
(K)

Tc 305.17

Molar concentration of the dead
polymer chains (mol/L)

D0 2.7547× 10−4

Mass concentration of the dead
polymer chains (g/L)

D1 16.110

Flow rate of initiator (L/h) u1 =Qi 108
Flow rate of cooling jacket fluid (L/h) u2 =Qc 471.6
Intrinsic viscosity (L/g) y1 = η 2.9091
Temperature of reactor (K) y2 =Te 323.56

4.2. The control system

The control objective is to manufacture a polymer with
a target molecular weightMw while regulating the temper-
ature of the reactor for safety and economic considerations.
However, as mentioned earlier, on-line measurement ofMw
is rarely available and the polymer viscosityη is used instead.

For this process, a 2× 2 MIMO control system, based
on the infinite-horizon MPC (IHMPC) algorithm, as pre-
sented by Rodrigues and Odloak[20], was implemented. In
this system (y1,y2) = (η,Te) are the controlled variables and
(u1,u2) = (Qi ,Qc) are the manipulated variables. The design of
the controller incorporates a process model, which is obtained
by step response test. Four SISO models are obtained and the
are combined in a transfer function matrix model as presented
in Table 3.

Some parameters of the IHMPC controller are the sam-
pling timeT= 1 h and the control horizonm= 3. Other tuning
parameters are not shown here.

In addition to the MPC control structure, a ratio control
law is implemented as[19]:

Qs = 1.5Qm − Qi (26)

Table 3
Polymerization reactor transfer function matrix model

y

y

This is done aiming at to maintain a nearly constant vol-
ume fraction of solvent in the reactor.

4.3. Fault diagnosis system

We intend to design a fault diagnosis system that will be
able to supervise faults (changes) in the process parameters
At, fi , Mm and disturbances in the temperatureTf . For this
purpose, the fault diagnosis system requires the use of a more
detailed model of the reactor than the model presented in
Table 3.

Observing Eqs.(19)–(25), it is clear that the process model
can be written as a nonlinear state-space of the form:

dx̄(t)

dt
= g(x̄(t), ū(t), f̄ (t)), ȳ(t) = h(x̄(t)) (27)

wherex̄ = [ [I] [M] Te Tc D0 D1 ]T is the state vec-

tor, ū = [ Qi Qc Qs ]T the input vector, ¯y = [ηTe]T the

output vector and̄f = [ At fi Mm Tf ]T is the fault vec-
tor. This model can be linearized, around the operating point
(x̄0(t), ū0(t), f̄0(t)) shown inTable 2, and the model in devi-
ation form can be transformed into a discrete form simi-
lar to Eq. (1), with a sampling timeT, wherex = x̄ − x̄0,
u = ū − ū0, y = ȳ − ȳ0 andf = f̄ − f̄0.

Based on this linear model, a bank of four reduced-order
U al-
i s,
e o the
f

oted
t
d r to
b edure
f near
f atch,
w the
f O
i he
g

K

P

w the
s umu-
l
a

J

lus-
t f the
o FDO
s es not
u1 u2

1
−45.37

5.795s + 1
e−1.547s 3.66

9.098s + 1
e−4.169s

2
121.17

7.049s + 1
e−0.771s −38.88

7.206s + 1
e−1.768s
y

IFDOs (Eqs.(17) and (18)) was implemented in a gener
zed observer scheme (GOS)[21]. In this bank of observer
ach residual is constructed such that it is insensitive t

ault of interest and sensitive to all other faults.
In the design of the reduced-order observers it was n

hat for the styrene reactor the pair (C22, Ā22) is only
etectable, which is the minimal condition for an observe
e implemented. In this case, the alternative design proc

rom [16] can be used. However, because of the nonli
eatures of the reactor, to reduce process/model mism
e prefer to use the observers with adaptive gain, in

orm of a Kalman filter. This feature converts the UIFD
n unknown input fault detection filter (UIFDF), where t
ainK is updated as follows:

(k) = (Ā22P(k − 1)CT
22)(I + C22P(k − 1)CT

22)
−1

(28)

(k) = (Ā22 − K(k)C22)P(k − 1)ĀT
22 (29)

hereP is the prediction error covariance matrix. In
tyrene system, the residuals were computed using a c
ative average of the residual, with a weighting factorN= 10
nd exponential forgetting factorλ = 0.1, in the form:

(r(t)) = N(1 − λ)
∞∑
i=0

λir(t − i) (30)

The performance of the fault diagnosis system is il
rated for two fault scenarios as shown below. For each o
ther possible fault scenarios, the performance of the UI
ystem was similar to the ones presented here and do
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Fig. 3. Residual responses for faultfAt (−5% inAt).

bring any new insight into the application of the method and
so was not included here. In all the cases presented here, the
process was assumed to be initially at steady state.

4.4. Fault scenario 1

A sudden decrease of 5% in parameterAt (fAt ) occurs at
t= 50 h. As can be seen inFig. 3, the fault is isolated per-
fectly, as it is alarmed by residualsrfi, rMm andrTf

and not
by residualrAt . The fault magnitude is estimated using state
z1 inferred with(13)and substituting the result into(9). The
estimation of the fault, presented inFig. 4, is obtained from
the insensitive observer as

f̂1(k) = (E11)
+[ẑ1(k + 1)− A11ẑ1(k) − A12ẑ2(k) − B1u(k)]

(31)

It can be seem from Eq.(31) that the estimation of the
fault magnitude at instantk depends on the inferred statez1
at instantk+ 1. To avoid this problem, the computation of the
fault estimation is delayed one sampling period.

This fault scenario corresponds to a change in the termi-
nation rate constantkt, which is the sum of the effects of
reaction disproportionation and combination. These contri-
butions are not easily estimated as they vary with temperature
and composition, causing an uncertainty in the overall con-
s gel
o dif-
f

It is shown inFig. 4 that detection and isolation of the
fault fAt is achieved in approximately 2 h and its estimation
in 15 h, after the sudden fault occurrence. We can also observe
that the MPC control system included in the simulation can
reject this particular fault without major consequences to the
styrene reactor as shown inFig. 5. The output variablesy1 and
y2 increase as a consequence of the fault and to correct this
situation, the IHMPC controller increases the control signals,
mainly inputu2. This causes the ratio control to diminish the
tantkt. In addition,kt presents a phenomenon known as
r Trommsdorff effect, when its value falls due to strong

usion limitations at higher monomer conversions.
 Fig. 4. Estimation of faultfAt (−5% inAt).
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Fig. 5. Manipulated and controlled variables for faultfAt (−5% inAt).

Fig. 6. Residual responses for faultftf (+0.5 K inTf ).
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flow rate of solvent (Qs). The controlled secondary variable
Mw is also presented inFig. 5.

4.5. Fault scenario 2

In this case we simulate a small increase of 0.5 K in the
feed temperatureTf (ftf ), occurring att= 50 h.Fig. 6 shows
that, the residualsrAt , rfi andrMm are sensitive and residual
rTf is insensitive to this fault. The fault is isolated correctly
and its magnitude is well estimated by means of Eq.(31), as
illustrated inFig. 7. For this disturbance, complete detection
and isolation is obtained in approximately 2 h after its occur-
rence and its estimation in achieved after 7 h of its abrupt
occurrence.

The occurrence of this fault increases the temperature
profile of the reactor (y2), which produces an increase in
the intrinsic viscosity (y1) and, consequently, the molecu-
lar weight (Mw) also increases. As expected, this disturbance
does not causes major problems to the control system. The
MPC control results in good regulation of the outputs as
shown inFig. 8, where it is observed that inputu2 was more
demanding, which is rather obviously justified. The profiles
of Qs andMw are also presented.

A fault diagnosis system based on the full-order UIFDO
was also implemented for this process. The performance
of the full-order system was similar to the performance of
r iso-
l hen
e erv-

Fig. 7. Estimation of faultftf (+0.5 K inTf ).

ing that for the system represented in(1), the fault estimation
using full-order UIFDO can be obtained by

f̂1(k) = (E1)+[x̂(k + 1) − Ax̂(k) − Bu(k)] (32)

wherex̂ = T −1ẑ, andẑ is the estimated state of the UIFDO.
Thus, the full-order system requires the state transformation
using the inverse of matrixT, which cannot be computed ade-
quately ifT is ill-conditioned. This problem appears in the
polymerization process, when the linearized process model
is computed around the middle operating point. On the other
educed-order system, with respect to fault detection and
ation. However, the full-order system did not converge w
stimating the size of fault. This can be explained by obs
Fig. 8. Manipulated and controlled va
riables for faultftf (+0.5 K inTf ).
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hand, by using the reduced-order UIFDO, the SVD approach
improves in a natural way the condition number of the esti-
mation problem, besides not requiring the transformation of
states to estimate the fault.

5. Industrial fluid catalytic cracking (FCC) unit

In a modern oil refinery, the most critical component, is
the fluid catalytic cracking (FCC) unit. The FCC unit involves
a nonlinear and multivariable process, with many cross-
couplings, subject to a number of operational constraints and
working at high temperatures. The extent of potential losses
due to unexpected faults in a FCC unit is enormous. As the
FCC unit involves high temperatures and the flow of solid
catalyst at high velocities, sticking of control valves and ero-
sion in measuring instruments are more likely to occur than
in most of the process units of the oil refinery. Thus, unex-
pected faults in the MPC control system of the FCC unit are
also more likely to occur than in the control systems of other
process units.

5.1. Dynamic process model and control system

A simplified schematic diagram of this process is shown
i e-
m ata,
w ntrol

structures in Petrobras refineries[23]. The nominal steady-
state operational conditions are shown inTable 4. The model
equations and process parameters are here omitted but they
can be found in Moro and Odloak[22].

The performance of a FCC process highly depends on the
selected control structure. In this paper, the control structure
is based on the original version of the MPC system proposed
for the FCC unit of the REVAP refinery. From this scheme
we consider only a 4× 4 MIMO control system, where the
inputs or manipulated variables are:u1,u3,u4 andu9. The out-
puts or controlled variables are:y1, y2, y3 andy4. The control
objective is stability rather economic, i.e. to minimize distur-
bance and interaction effects and to keep the operation point
as close as possible to its nominal values, where, usually,
optimal operation conditions lie.

The controller is also the IHMPC of Rodrigues and Odloak
[20]. It is based on the transfer function model presented
in Table 5. In the implementation of the IHMPC controller
simulated here, the sampling time isT= 3 min and the con-
trol horizon ism= 4. Other controller tuning parameters are
omitted.

5.2. Fault diagnosis system

Several fault diagnosis systems have been applied to the
F ased
o
d sors
n Fig. 9. Moro and Odloak[22] provide an extensive math
atical model of this process, validated with industrial d
hich has become a standard for validation of FCC co
Fig. 9. FCC Reactor–r
CC unit. However, these diagnosis systems are mainly b
n data-driven approaches. Pranatyasto and Qin[24] have
eveloped a fault detection system for the FCC sen
egenerator system.
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Table 4
Nominal steady-state operational conditions for the FCC unit

Variable description Tag Value

Input variables
Total combustion air flow rate (t/h) u1 221
Regenerated catalyst valve position (%) u2 82
Total oil feed flowrate (gasoil + deasphalted heavy
oil) (m3/d)

u3 9700

Temperature of the total oil feed (◦C) u4 235
Flue gas flow rate valve position (%) u5 63
Spent catalyst valve position (%) u6 73
Flow of steam to the gas compressor Turbine
driver valve position (%)

u7 74

Combustion air temperature (◦C) u8 190
First stage/feed ratio of air flow rate (%) u9 90.72

Output variables
Temperature of the regenerator first stage dense
phase (◦C)

y1 670.14

Temperature of the regenerator second stage
dense phase (◦C)

y2 700.88

Estimated cracking reaction severity (%) y3 77.5
Riser (reactor) temperature (◦C) y4 542.2
#p between reactor and regenerator (kgf/cm2) y5 0.65
Catalyst inventory in the reactor (t) y6 90
Pressure at the wet gas compressor (kgf/cm2) y7 1.0
Temperature of the regenerator first stage dilute
phase (◦C)

y8 704.39

Temperature of the regenerator general dilute
phase (◦C)

y9 697.53

following the multivariate statistical principal component
analysis (PCA) method. Vedam and Venkatasubramaniam
[25] introduced PCA-SDG (signed digraphs) fault diagno-
sis approach and[26] developed a recursive partial least
squares (PLS) method to detect faults in a FCC unit. Sebzalli
and Wang[27] applied PCA-Fuzzy clustering fault diagnosis
approach to the FCC main fractionator. The main disadvan-
tage of these methods is that they need a large amount of
plant data that are collected along a quite large window of
operating time and are used to construct a statistical model
of the process. This new model is not the same as the one used
in the MPC controller to predict the system output. Here, the
same model is used both in the MPC controller and in the
fault diagnosis system.

The transfer function matrix model shown inTable 5is
transformed into a modified state-space model with the fol-

lowing structure:

x̃(k + 1) = Ãx̃(k) + B̃u(k) + R1f,

y(k) = C̃x̃(k) + R2f (33)

where x̃ ∈Rn×1, f =
[

fa

fs

]
∈Rp×1 (p = m + l),

fa∈Rm×1 denotes the vector of actuator faults,fs∈Rl×1

denotes the vector of sensor faults,R1 = [B̃0n×l] ∈Rn×p

andR2 = [0l×mIl] ∈Rl×p are the actuator and sensor fault
distribution matrices respectively.

Here, we assume that the probability of two or more faults
to occur at the same time is negligible. Thus, the model
defined in(33) can be written for the case of actuator faults
as follows:

x̃(k + 1) = Ãx̃(k) + B̃u(k) + B̃ifi + [ B̄ 0n×l ]f̄ ,

y(k) = C̃x̃(k) (34)

whereB̃i ∈Rn×1 is theith column of matrixB̃, B̄ ∈Rn×(m−1)

corresponds to matrix̃B without theith column,fi ∈R is the
ith component of vectorf and f̄ ∈R(p−1)×1 corresponds to
vectorf without theith element.

Analogously, for sensor faultsfm+j (1 ≤ j ≤ l) system
(

x

y

w x
I

f

f

(
so

r e that
a nsor
f

f

Table 5
FCC unit transfer function matrix model

u1 u3

y1
0.0661s + 0.0018

s2 + 0.0422s + 0.0019

−10−3(0.7857s + 0.0425)

s2 + 0.0434s + 0.0022

y2
0.0730s + 0.0020

s2 + 0.0421s + 0.0019

−10−3(0.6939s + 0.0430)

s2 + 0.0393s + 0.0023

y3
0.0123s + 0.0025

s2 + 0.6546s + 0.0231

−1.5 × 10−3(0.1082s + 0.0032

s2 + 0.0339s + 0.0009

y
0.013

009

4

0.0219s + 0.0008

s2 + 0.0400s + 0.0016

−1.25× 10−3(0.6931s +
s2 + 0.0339s + 0.0
33)can be written as follows:

˜(k + 1) = Ãx̃(k) + B̃u(k) + [ B̃ 0n×(l−1) ]f̄ ,

(k) = C̃x̃(k) + Ijfm+j + [ 0l×m Ī ]f̄ (35)

here Ij ∈Rl×1 is the jth column of the identity matri
l, Ī ∈Rl×(l−1) the identity matrix without columnj,
m+j ∈R1×1 the (m+ j)th component of vectorf and

¯∈R(p−1)×1 is obtained from vectorf by removing the
m+ j)th component.

As discussed by Park et al.[28], sensor faults can be al
epresented by actuator faults. For this purpose, assum
random walk model describes the dynamics of the se

ault:

m+j(k) = fm+j(k) + Tξ(k)

u4 u9

0.0271s + 0.016

s2 + 0.0561s + 0.0033

45.3896s + 7.9639

s2 + 1.4619s + 0.0757

0.0256s + 0.015

s2 + 0.0504s + 0.0032

−44.3671s − 0.2308

s2 + 0.3213s + 0.0195

) 0.0181s + 0.0039

s2 + 0.3455s + 0.0409

−0.2655s − 0.0086

s2 + 0.0376s + 0.0028

6) 0.0653s + 0.0096

s2 + 0.4273s + 0.0188

−3.1350s − 0.0568

s2 + 0.0724s + 0.0043
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Fig. 10. Residual responses for faultfu1 (−5% in actuator 1).

whereξ is the sensor error. Therefore, for a sensor fault, an
augmented system is obtained as follows:[

x̃(k + 1)

fm+j(k + 1)

]
=

[
Ã 0n×1

01×n 1

] [
x̃(k)

fm+j(k)

]

+
[

B̃

01×m

]
u(k) +

[
0n×1

T

]
ξ(k)

+
[

B̃ 0n×(l−1)

01×m 01×(l−1)

]
f̄ ,

y(k) = [
C̃ Ij

] [
x̃(k)

fm+j(k)

]
(36)

Observe that, for actuator or sensor fault, the faulty process
models(34)–(36) have the same state-space structure as Eq.
(1).

In this case study, the fault diagnosis system supervises
inputsu1, u3, u4 andu9, and outputsy1 andy4 of the FCC
MPC system. A bank of six full-order UIFDOs (Eqs.(2) and
(4)) is designed in a GOS scheme. The first four residuals,
for actuator fault detection, are based on model(34) and the
last two residuals, for sensor fault detection, are based on
model(33). The static gain of the full-order observers has the
f rd-
i e

fault diagnosis algorithm is illustrated for two scenarios as
described below. The algorithm was also tested for all the
other possible scenarios corresponding to a single fault and
the obtained performances were similar to the ones presented
here.

5.2.1. Fault scenario 1
The fault is represented by a 5% decrease in actuator 1

(fu1), occurring att= 100 min. In this case, residualru1 is
ormK1 = [
I l 0n×l

]T. The residuals are evaluated acco
ng Eq.(30), with N= 1 andλ = 0.1. The performance of th
 Fig. 11. Estimation of faultfu1 (−5% in actuator 1).
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Fig. 12. Inputs and controlled outputs for faultfu1 (−5% in actuator 1).

Fig. 13. Residual responses for faultfy4 (+5% in sensor 4).
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insensitive to the fault and the other residuals are sensitive.
Fig. 10 shows that the proposed approach is able to detect
and isolate this fault satisfactorily. The fault magnitude is
adequately estimated as shown inFig. 11and this is done by
substituting the state estimation ˆz provided by the observer
of the faulty input, into the faulty model defined in(35), and
rearranging the resulting equation as in(32).

The effects of this fault on the process are shown inFig. 12,
where it can be seen that the temperature in the regenerator
section is decreased. To compensate this undesirable effect
the controller supplies a larger amount of combustion air,
which is not attractive economically. The controller increases
the control signalsu1, u3 andu4 trying to keep the output
variables at their desired values.

In the case presented here, actuator fault detection and iso-
lation is achieved in approximately 10 min and its estimation
in 200 min, after the fault occurrence.

5.2.2. Fault scenario 2
The fault corresponds to a 5% increase in the measurement

of sensor 4 (fy4), occurring att= 100 min.Fig. 13 shows
that residualry4 is insensitive to this fault while the other
residuals are sensitive. The magnitude of the fault is estimated
using a dedicated Luenberger observer. The fault estimation
is illustrated inFig. 14where it is indicated that the estimation
t

as it
m n. To
r f the

Fig. 14. Estimation of faultfy4 (+5% in sensor 4).

riser has to be rapidly reduced.Fig. 15presents the responses
of the manipulated and controlled variables associated with
the fault in sensor 4. As it can be seen, this fault causes satu-
ration inu3 andu4. Moreover, an acceptable control is never
achieved with MPC since bias appears in all the outputs. For
this fault, the complete detection and isolation is obtained in
approximately 20 min, while its estimation occurs only about
200 min, after the fault occurrence.

It is interesting to mention that, for the FCC process exam-
ple, fault diagnosis systems based on the full-order UIFDO
ends to the correct value of the fault.
This faulty scenario is unsafe to the FCC operation,

ay cause an undesirable breakdown of the productio
evert this situation the temperature of the inflow feed o
Fig. 15. Inputs and controlled outputs re
sponses for faultfy4 (+5% in sensor 4).
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or on the reduced order UIFDO produced similar perfor-
mances. This is so because the state space model utilized
in the fault detection system was obtained via reliable linear
model identification methods, which produce minimal order
fully observable models. Thus, model reduction was not nec-
essary to be implemented in the fault detection system in
order to produce a correct estimation of the magnitude of the
fault.

As seen in the presented cases, there are time delays
between the fault occurrence and its detection, isolation and
identification. In the cases studied, the delay related to the
fault identification is larger than the others. This is due to
the lack of sufficient input–output measurement data in the
early stages of the identification step. Gradually, as more data
become available from the monitored system, the fault esti-
mate is refined, i.e. it becomes more accurate and the estimate
error decreases until it reaches a minimum and the fault can
be identified. Moreover, the final estimate of the fault cannot
be expected to match perfectly the true value of the fault, due
to model uncertainties. Therefore, imperfections of the fault
analysis system, in terms of delays and model uncertainties,
should be taken into account if control reconfiguration is to
be considered.

6. Conclusions
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