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Abstract

The main focus of this paper is on the study and application of existing methodology on unknown input observer (UIO) for on-line diagnosis
of faults on input actuators, output sensors, model parameters and disturbances of complex chemical plants operating under model predictive
control (MPC). Two industrial systems are studied by simulation: styrene polymerization reactor and fluid catalytic cracking (FCC) unit. For
each of these cases, the development of the method is presented and the design of the fault diagnosis system is discussed. In the first case,
bank of reduced-order UIOs is used for fault diagnosis of process parameters and external disturbances. The design is based on the rigorou:
first principles model of the polymerization process. In the second case, a single bank of full-order UIOs is used for sensor and actuator fault
diagnosis based on an input—output linear model of the FCC unit. In both cases, extensive simulation results are presented and discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction the process to an operating point far from the optimal one
and can cause saturation of a manipulated valve. Moreover,
The size and complexity of modern industrial plants have sensor faults make the plant partially unobservable, while
led to the adoption of MPC as the standard control solu- actuator faults make the plant partially uncontrollable. The
tion for most processes. At the same time, the integration supervisory system may help MPC to deal with these abnor-
of large process plants in a single centralized MPC con- mal situations. In this sense, the fault diagnosis system will
troller has increased the vulnerability of these systems to be seen as part of a larger strategy for optimal process control.
abnormal occurrences, which can significantly degrade the The fault diagnosis area has grown as an active research
performance of the overall control system. Frequently, the topic for more than 30 years. Extensive reviews of different
MPC system will hide a gradual incident until the control fault diagnosis methods can be found in the literature
failure becomes unavoidable. In other cases, the multivariable[1-7]. Existing methods can be grouped into three general
character of the MPC controller can amplify a local incident categories: quantitative model-based methods, qualitative
that is propagated to the whole process system resulting in anodel-based methods and data-driven methods. Our interest
premature plant shutdown. Therefore, an important issue tois on the class of quantitative model-based techniques,
achieve high performance, efficiency, reliability and safety namely observer-based approach, parameter estimation
of large scale processes is to supervise the centralized MPCapproach and parity-space approach, which have received
controller, i.e. to diagnose faults in the control system while considerable attention in recent years. These approaches are
the plant is still operating in a controllable region. based on the concept of analytical or functional redundancy,
As any control strategy, MPC is usually vulnerable to mal- which makes use of a mathematical model of the process to
functioning of sensors and actuators, which can be considerecbtain behavior estimates. The inconsistencies between the
as additive faults. For example, a biased sensor may leadestimated and actual behavior are symptoms or fault indica-
tors. They are called residuals and may reflect the abnormal
"+ Corresponding author, Tel.: +55 11 30912237; fax: +55 11 38132380, Situation of the supervised process. Later, the residuals are
E-mail addressesoscar@pdji.ep.usp.br (O.A.Z. Sotomayor), evaluated aiming at to localize the fault. Although there is
odloak@usp.br (D. Odloak). a close relationship among the quantitative model-based
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technigues, observer-based approach have become the most ft) d@)
popular and important method for model-based fault diagno-
sis[8,9], especially within the automatic control community.

We do not find in the literature a significant number of ()

applications of observers for fault diagnosis in chemical pro- — | Process ?

cesses of industrial relevan¢®0] use the unknown input

observer (UIO) in a continuous stirred tank reactor (CSTR), -————— -

while [11,12] apply the extended Kalman filter (EKF) in a 1 elt)=rt)
——=

two-tank system and a fluid catalytic cracking (FCC) unit,
respectively. A common feature in these works is that the
fault diagnosis is performed in processes operating in open
loop. However, most chemical processes operate in closed-

loop, and the control action, due to the feedback, may affect L= === = = — = -
. . . . . Observer or Kalman filter
the fault diagnosis system in detriment of its performance.
There are a few papers dealing with monitoring of processes Fig. 1. Scheme of a linear observer for residual generation.

operating under conventional regulatory control, e.g[ 58k

that use the EKF in a binary distillation colunjb4] that diagnosis system is normally carried out following a three-

apply the generalized Luenberger observer (GLO) in a pre- stage procedure.

heating tank and15] that use the EKF in an exothermic

CSTR. However, we could not find studies on the use of 2.1. Residual generation

observer-based fault diagnosis systems in processes operat-

ing under advanced control, namely model predictive control  Thisiis the core element of a fault diagnosis system. It con-

(MPC). sists in estimating the process output by using either a Luen-
The basic idea of this paper is to show the application berger observer in a deterministic setting or a Kalman filter

and to evaluate the practical feasibility of UIO for on-line in a stochastic setting. The estimation error (or innovation

fault diagnosis in complex chemical plants operating under in the stochastic case) is defined as the residual. Observer-

MPC. Two industrial systems are studied: the styrene poly- based fault detection makes use of the disturbance decoupling

merization reactor and the FCC reactor—regenerator unit. Theprinciple, in which the residual is computed assuming the

application of UIOs to such systems is not trivial and there decoupling of the effects of faults on different inputs. For the

are some challenges in the design of a diagnosis system thapurpose of fault isolation, it is also assumed that the effect of

is able to achieve a satisfactory performance. In the first case a fault is decoupled from the effects of other faults. A way to

a bank of reduced-order UlOs is used for process parameteachieve this is by using the so-called unknown input observer

fault and external disturbance diagnosis based on the lin-(UIO) or unknown input filter (UIF) for the deterministic

earized model of the polymerization process. In the secondor stochastic cases, respectively Patton and Chen (1997)

case, a single bank of full-order UIOs is used for sensor and[g].

actuator faultdiagnosis based on alinear model obtained from  The basic idea of a linear observer-based residual gener-

input-output data of the FCC unit. The paper is organized asator is illustrated irFig. 1 The observer consists of a model

follows. Section2 presents preliminary concepts related to parallel to the process with a feedback of the output estima-

observer-based fault diagnosis systems. Se@&idescribes tion error,e,(t) = y(t) — (z).

the fulland a reduced-order UIO for fault detection purposes.  |n Fig. 1, u andy denote the input and output vectors,

The description of the UIO versions, as presented here, aimsrespectively,f the vector of faults to be detected adds

at a better understanding and comprehension of this subjecthe vector of unknown inputs, to which the detection system

by the reader in order to facilitate the practical implementa- should be insensitive. Variablecbrresponds to the vector of

tion. Sectiont presents the application of the fault diagnosis estimated outputs,the residual vector arid is the observer

to the styrene polymerization reactor and Seclidiiscusses  gain. To provide useful information for fault diagnosis, the

a similar application to an industrial FCC unit. Finally, con- residual should be defined in such a way that
clusions are reported in Sectién _
r(t) =0 (orr(¢) = 0), if f(r) = O (fault-free case)

r(t) #0, if f(¢) # 0 (faulty case
2. Observer-based fault diagnosis 0 # 6 #0( Y )

Fault diagnosis is usually performed to accomplish one or 2.2. Residual evaluation
more of the following tasks: fault detection (or monitoring), to
indicate the fault occurrence; faultisolation, to determinethe  The residual is examined in terms of the likelihood of a
exact location of the fault and fault identification, to estimate fault, and a logical decision-making process is then applied
the fault magnitude. The design of an observer-based faultaiming at to decide if the fault has occurred and avoid wrong
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decisions, such as false alarm and fault ignored. There areestimation errord, = x — x) and the residual are defined by

several decision-making methods, but they all end in a simple
binary decision variabl&, whereitis used a fixed or adaptive
thresholdT(t) on a residual evaluation functicifr (t)):

J(r(1)) = T(),
J(r(0) > T(1).

for f(r) = 0 thenS, = O (fault-free case)
for f(r) # OthenS, = 1 (faulty case)

2.3. Fault analysis

Consists in determining the magnitude and time-variant
behavior of the fault. This subjectitself has not gained enough
research attention, but it can be of crucial importance if con-
trol reconfiguration is required.

3. Fault detection with unknown input observers

The unknown input observer (UIO) is a generalization

ex(k +1) = (A — HCA — K1C)ex(k)
+((A — HCA — K1C) — F)z(k)
+((I = HC) — T)Bu(k)
+((A — HCA — K1C)H — K2)y(k)

+ (I — HC)E1 fa(k) + (I — HC)E2 f2(k)  (3)
r(k) = y(k) — Cx(k) = (I — CH)y(k) — Cz(k) 4
If the following relationships are true:
T=1-HC, TE1 =0, F =TA — K1C,
K> = FH, Ki2=Ki1+ K> (5)
then Eq.(3) becomes
ex(k +1) = Fey(k) + TE3 fa(k) (6)

If the eigenvalues oF are stable and assumiifig=0, e

of the Luenberger observer, which is here designated as thewill approach zero asymptotically, i.e > x, and, therefore,

unknown input fault detection observer (UIFDO). In this sec-
tion, two linear versions of UIFDO, the full-order and the
reduced-order, are detailed.

Considering that malfunctioning can be caused by faults

r(k) = Ce(K). This means that, the residual define@will
be insensitive to the faults representedyin

Assuming that the conditions defined (#®) hold true, a
particular solution to the fault detection problem in terms of

on plant components as sensors and actuators or by unknowmnatrix H is given by[16]:
disturbances, we represent the process by a state-space model

in the following form:

x(k + 1) = Ax(k) + Bu(k) + Ef(k), y(k) = Cx(k)

@)

wherex € R"*1 is the statey € R”* the input,y € R™** the
output, f € R&*1 the fault (including disturbances) akds
the discrete sampling instant.c R**" is the system matrix,

B e R™™ the input matrix,C € R™*™ the output matrix and
E € R"*8 the fault distribution matrix, which is assumed to
be known. For the purpose of fault isolation, vedtes par-
titioned intof = [flfz]T, wheref; contains the faults that will
not be detected by the fault detector dndontains the faults
that will be monitored by the fault detection system. Also,
matrix E is partitioned intce = [E; E2].

3.1. Full-order UIFDO

Following[16], a full-order UIFDO that decouplésfrom
the rest of systerfil) has the following form:

z(k + 1) = Fz(k) + TBu(k) + K12y(k),
x(k) = z(k) + Hy(k) (2)

wherez € R"*1is the state of the UIFDO, obtained by the lin-
ear transformatioa=Tx, andx'is the estimated state vector,
whilst F, T, K andH are matrices that will be designed such
that the unknown input will be decoupled from other inputs,

H = E1(CE1)" (7)

where () denotes the Moore—Penrose pseudo-inverse. The
following theorem states the existence conditions for the full-
order UIFDO.

Theorem 3.1. The necessary and sufficient conditions for
the existence of a full-order UIFDO for the system defined by
(1) are[16]:

() rank(CEz) =rank(Ez),
(i) (¢, TA) s a detectable pair

3.2. Reduced-order UIFDO

Full-order observers, as presented in Sec8dh allow
the estimation of the whole state vector. However, in many
applications, to know all the components of the state may not
be really necessary or not even possible as when condition (ii)
in Theorem 3.1is not attended. This may happen when the
linear state space model is obtained by linearizing a complex
nonlinear model of large dimension. In this case, if the obser-
vation of only a part or a linear combination of the states is
sufficient for residual generation, the solution to the observer
problem can be obtained under less restrictive existence con-
ditions than those imposed by the full-order observer. Several
approaches to the design of the reduced-order UIFDO have
been proposed in the literature. Here, we follow the method of
Hou and Miller [17], to produce a reduced-order UIFDO to

and certain design requirements will be attended. The statedecouplé; from other faults in systergl). For this purpose,
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consider the non-singular transformation matfix= U7, Consider now the partitions:
where U is obtained from the singular value decomposi-
1 219 p o yi(k) uTc, — Co1
tion (SVD) of Ey, i.e. E1 = Uz 0 VlT. Thus, applying Y y3(k) ’ 202 Cas
the state transformatiar= Tx to system(1) results: Then, the transformed output definedi2)can be written
as follows:
z(k + 1) = TATYz(k) + TBu(k) + TE1 f1(k) + TE2 fo(k),
k+d) . “ © ) /20 yi(k) = V3 z1(k) + C21z2(k) (13)
y(k) = CT (k) ®
V3 (k) = Ca2z2(k) (14)
Consider now the following partitions: Next, substitutez; (K) from (13) into (10). The modified
subsystem 2 is given represented b
() = z1(k) rar-i_ | A1 A Y J P . Y
z2(k) ’ Ax1 A |’ 72(k +1) = (A2 — A21(22V2T) C21)z2(k) + Bau(k)
5, +A21(22V3) Vi) + Ezaf2 (15)
TB = [B ], CT_lz[C1 Cz],
2 y5(k) = C22z2(k) (16)
TE: — E11 TE, — Exn Finally, with the assistance of a Luenberger observer, a
1= , 2= . i
0 Eo residual generator fdf.5)—(16)can be written as follows:

Za(k + 1) = Ago3a(k) + Bou(k) + A21(Z2V3) yi(k
The transformed system can be separated in two subsys- 2 ) 22%2(k) 2u(k) 21(Z2V2) »i(k)

tems as follows: + K(y3(k) — C2222(k)) (7)
z1(k + 1) = Anaza(k) + Arozo(k) + Biu(k) r(k) = ys(k) — C22z2(k) (18)
+ E11f1(k) + E21f2(k) ()] whereA, = A — Api(52V]) Can.

The observer gaiK in Eq.(17) can be obtained following
the usual pole placement approach. Notice that the order of
the UIFDO described above is € ns), wheren; = rank(E1).

(10) It is easy to verify that in the design of the reduced-order
UIFDO we need to satisfy the following existence conditions.

z2(k + 1) = Az1za(k) + A22z2(k) + Bou(k) + E22f2(k)

y(k) = C1za(k) + Caz2(k) 11) Theorem 3.2. Necessary and sufficient conditions for the

) existence of a reduced-order UIFDO for the system defined
From Eq.(9), we observe that subsystem 1 is affected by (1) are [17]:

by bothf; andfy, while Eq.(10) shows that subsystem 2
is affected only byf, and consequently is independent of (i) rank(Ck)=rank(E),
f,. Under the assumption that the state of subsystem 1 is(ii) (C22, A22)is a detectable pair
computed using the output measurement, we can construct
an observer-based residual generator that is insensitiye to Remark 2.1. In Theorems 3.1 and 3.Zondition (i) is

If Cy is of full rank, z;(k) can be eliminated fror(iL0) by usually assumed in the observer design for linear systems
substitutingz; (k) obtained in(11). ConsideringCll the left with unknown inputs. It means that the maximum number
annihilator ofCy, i.e.C1C1 = 0, and by applying the output  of unknown inputs that can be decoupled is limited to the
transformationys = Ciy to (11), a modified subsystem 2  number of independent measurements.
can be obtained. OtherwiseGf is not of full rank, consider

a non-singular transformation matffx = U3, such that), Remark 2.2. In Theorems 3.1 and 3.Zondition (ii) is
) ] ) 2| 1 equivalent to the condition that all the non-observable modes
is obtained from the SVD o€y, i.e. C1=Uz | | V;. of the system are stable. The remaining modes are stabilized
. L by gainK3, in the full-order case, and in the reduced-order

Applying the output transformatiory =Ty to (11) case, that are chosen to stabilize the system dynamic matrices
results F and (A2 — KC2»), respectively.
y (k) = U y(k) = [22 V3 z1(k) + UJ Caza(k) (12) Next, we illustrate the application of UIO systems to

0 the styrene polymerization reactor and to the fluid catalytic
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cracking (FCC) unit. In both cases, we assume that the pro- Q. T
cess is operating under MPC control. In the polymerization St
reactor, the objective of the fault diagnosis system is to super-

vise faults on a process parameter and external disturbances. Qille Tt H}

In the FCC system the objective is to supervise the mal- Initiator Qm M1 Tr
functioning of actuators (inputs) and sensors (outputs) of the l Monomer

centralized control system.

. . Qc Tci’
4. Styrene polymerization reactor C—"wﬁng fluid

The polymerization reactor is usually the heart of the poly-
mer production process and its operation may be difficult as - S QT
it involves exothermic reactions, unknown reaction kinetics G -
and high viscosity. Furthermore, in case that the process is
not working as it should be, it can be very difficult to tell nQIMIIT,

Cooling fluid

which factor is responsible for the abnormality. Besides, the ' ol
) Lo . e Effluent
impossibility to purify products that are out of specification
makes a proper fault diagnosis system very useful to this kind Fig. 2. Process diagram of the styrene polymerization reactor.
of procesg18].
. d[T Tet — To hA
4.1. Dynamic process model [Tel _ QclTet = To) | (Te — To) (22)
dt Ve pcCpcVe
Here, we consider the industrial process describgd®ly
. . o L dDg 2 OitDo
for free-radical solution polymerization of styrene in a jack- o = 0.5k[ P]* — v (23)
eted CSTR. A schematic diagram of this process is shown in g
Fig. 2 dD; OiD1
Assuming the standard mechanism for free-radical poly- —g,~ = Mmkp[MI[P] — = (24)
merization[19] presented the following model for the styrene
reactor: n = 0.0012(My,)°* " (25)
d[z [If] — O I
% = M — kil 1] (19)  where My = D1/Do. [P]=[2fiki[1]/k]%®, k=
AJ exp(_E]/Te)a ] = i7 D, Qt = Qi + QS+ Qm
d[M]  (Om[Mi] — O M]) L 20 Output of EQ.(25) is included in the model to simulate
dr % — kp[M][P] (20) the measurement of the intrinsic viscosity (nstead of the
average molecular weighty), which is rarely available
di7e]  OWli —Te) (—AH) on-line. For the set of parameters pr_es_enteﬂ{able 1 the
e v - kp[M][ P] reactor has three steady states, but it is designed to operate
P-p at the steady state that produces the highest conversion. The
hA operational conditions corresponding to this steady state are
— (Te — To) (22) . )
pCpV listed inTable 2
Table 1
Process parameters for the polymerization reactor
Variable description Tag Value
Frequency factor in Arrhenius equation for initiation reaction'jh A 2.142x 10"
Activation energy for initiation reaction (K) E 14897
Frequency factor in Arrhenius equation for propagation reaction (L/mol h) Ay 3.816x10%°
Activation energy for propagation reaction (K) Ep 3557
Frequency factor in Arrhenius equation for termination reaction (L/mol h) A 4.50x 102
Activation energy for termination reaction (K) = 843
Initiator efficiency fi 0.6
Heat of polymerization reaction (cal/mol) —AH;, 16700
Monomer molecular weight (g/mol) Mm 104.14
Overall heat transfer coefficiemtheat transfer area of CSTR (cal/K h) hA 2540°
Mean density of reactor fluid mean heat capacity of reactor fluid (cal/K L) rCp 360

Density of cooling jacket fluick heat capacity of cooling jacket fluid (cal/K L) pcCpc 966.3




98 0.A.Z. Sotomayor, D. Odloak / Chemical Engineering Journal 112 (2005) 93-108

Table 2 This is done aiming at to maintain a nearly constant vol-
Steady-state operational condition for the polymerization reactor ume fraction of solvent in the reactor.
Variable description Tag Value
Flowrate of solvent (L/h) Qs 459 4.3. Fault diagnosis system
Flowrate of monomer (L/h) Qm 378
Reactor volume (L) \% 3000 - . - : .
Volume of cooling jacket (L) Ve 33124 We intend tg design a fault dlaglj05|s system that will be
Temperature of reactor feed (K) T 330 able to supervise faults (charlges) in the process parameters
Inlet temperature of cooling jacket Tef 295 A, fi, M and disturbances in the temperatdke For this

fluid (K) purpose, the fault diagnosis system requires the use of amore
Concentration of initiator in feed [l 0.5888 detailed model of the reactor than the model presented in

(mol/L) Table 3
Concentration of monomer in feed M 8.6981 . .

(mol/L) [M] Observing Eqq19)—(25) itis clear thatthe process model
Concentration of initiator in reactor [ 6.6832x 102 can be written as a nonlinear state-space of the form:

(mol/L) dx_(t)
Concentration of monomer in reactor [M] 3.3245 N oo A 7 A — (o

— = 1), u(t), f(z), 1) = h(x(z 27

p o = SE0.0). F@). 30 = () (27)
Temperature of cooling jacket fluid Te 305.17 . -

(K) wherex =[[I] [M] Te T. Do D] isthestatevec-
Molar concentration of the dead Do 2.7547x 104 — T . - T

polymer chains (mol/L) tor,u =[ Q; Qc_ QOs] the input vectoTry = [nTe]' the
Mass concentration of the dead D1 16.110 outputvectorand =[At f; Mm Ti] isthefaultvec-
o polyn;er (f?hﬁ};hst(gl(t)/h) o 108 tor. This model can be linearized, around the operating point

OW rate or Iniuator U =Qj - — " : . i
Flow rate of cooling jacket fluid (L/h) ~ up=Qc 4716 (xo(r), uo(r). fo(r)) shown inTable 2 and the model in devi-
Intrinsic viscosity (L/g) yi=n 29091 ation form can .be transfor_med. into a discrete form simi-
Temperature of reactor (K) yo=Te 323.56 lar to Eq. (l), with a sampllng tEneT,_Wherex =X — X0,

u=u—ug,y=y—yoandf = f— fo.

Based on this linear model, a bank of four reduced-order
UIFDOs (Egs(17) and (18)was implemented in a general-
ized observer scheme (GORL]. In this bank of observers,
each residual is constructed such that it is insensitive to the
fault of interest and sensitive to all other faults.

In the design of the reduced-order observers it was noted
that for the styrene reactor the pai€p, A22) is only
detectable, which is the minimal condition for an observer to
be implemented. Inthis case, the alternative design procedure
from [16] can be used. However, because of the nonlinear

this system y1.y2) = (n.Te) are the controlled variables and features of the reactor, to reduce process/model mls_match,
we prefer to use the observers with adaptive gain, in the

(u1,u2) = (Qi,Qc) are the manipulated variables. The design of . .
the controller incorporates a process model, which is obtained?corm of a Kalman filter. This feature converts the UIFDO

by step response test. Four SISO models are obtained andthegn _un}?r.\owndlntplét fat:(lt”dete-ctlon filter (UIFDF), where the
are combined in atransfer function matrix model as presented ant Is updated as foflows:

4.2. The control system

The control objective is to manufacture a polymer with
a target molecular weightl,, while regulating the temper-
ature of the reactor for safety and economic considerations.
However, as mentioned earlier, on-line measuremeM,pf
is rarely available and the polymer viscositis used instead.

For this process, a 2 2 MIMO control system, based
on the infinite-horizon MPC (IHMPC) algorithm, as pre-
sented by Rodrigues and Odlog0], was implemented. In

in Table 3 T . T . T,—1
Some parameters of the IHMPC controller are the sam- Kk) = (A22P(k = )C2)(1 + C22Pk = 1)C20) (28)
pling timeT =1 h and the control horizam= 3. Other tuning P(k) = (Zzz — K(k)C22) P(k — 1),?52 (29)

parameters are not shown here. _ o . .
In addition to the MPC control structure, a ratio control WhereP is the prediction error covariance matrix. In the

law is implemented agL9]: styrene system, the residuals were computed using a cumu-
lative average of the residual, with a weighting fadir 10
Qs=150m— Qi (26) and exponential forgetting factar=0.1, in the form:
Table 3 N
Polymerization reactor transfer function matrix model J(r@#) =N1- )»)Z)»lr(f — i) (30)
U U i=0
" —4537 1547 366 169 The performance of the fault diagnosis system is illus-
5795 +1 9.098 +1 trated for two fault scenarios as shown below. For each of the
v 12117 o771 —3888 1763 other possible fault scenarios, the performance of the UIFDO

7.04% +1 7.206 +1 system was similar to the ones presented here and does not
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Fig. 3. Residual responses for faylf, (—5% in Ar).

bring any new insight into the application of the method and It is shown inFig. 4 that detection and isolation of the
so was not included here. In all the cases presented here, théault f4, is achieved in approximately 2 h and its estimation

process was assumed to be initially at steady state. in 15 h, after the sudden fault occurrence. We can also observe
that the MPC control system included in the simulation can
4.4. Fault scenario 1 reject this particular fault without major consequences to the

styrene reactor as shownhig. 5. The output variableg, and

A sudden decrease of 5% in parameig( f4,) occurs at y2 increase as a consequence of the fault and to correct this
t=50h. As can be seen fRig. 3 the fault is isolated per-  situation, the IHMPC controller increases the control signals,
fectly, as it is alarmed by residualg, ry, andrr, and not mainly inputu,. This causes the ratio control to diminish the
by residuak 4,. The fault magnitude is estimated using state
71 inferred with(13) and substituting the result in{@). The
estimation of the fault, presentedfiig. 4, is obtained from
the insensitive observer as

f1(k) = (E1)T[21(k + 1) — A1aZ1(k) — A1222(k) — Byu(k)] 0 1
(31)

x10'"

0.5} 4

-0.5f

It can be seem from Ed31) that the estimation of the
fault magnitude at instat depends on the inferred state
atinstank+ 1. To avoid this problem, the computation of the
fault estimation is delayed one sampling period.

This fault scenario corresponds to a change in the termi-
nation rate constark;, which is the sum of the effects of
reaction disproportionation and combination. These contri-
butions are not easily estimated as they vary with temperature
and composition, causing an uncertainty in the overall con- 0 50 700 150
stantk;. In addition k; presents a phenomenon known as gel Time (h)
or Trommsdorff effect, when its value falls due to strong dif-
fusion limitations at higher monomer conversions. Fig. 4. Estimation of faultfs, (—5% inAy).
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flow rate of solvent@s). The controlled secondary variable - ' '
My is also presented iRig. 5. | |

. 0.5 Real fault—
4.5. Fault scenario 2

0.4k Fault estimate
In this case we simulate a small increase of 0.5K in the
feed temperatur@;( f;), occurring att=50 h.Fig. 6 shows
that, the residualsy,, ri andry, are sensitive and residual
rr; is insensitive to this fault. The fault is isolated correctly
and its magnitude is well estimated by means of Bd), as
illustrated inFig. 7. For this disturbance, complete detection
and isolation is obtained in approximately 2 h after its occur-
rence and its estimation in achieved after 7 h of its abrupt

Fault amplitude (°K)

occurrence. il ; , ]
The occurrence of this fault increases the temperature 0 a0 100 130
profile of the reactoryp), which produces an increase in Time (h)

the intrinsic viscosity ¥f1) and, consequently, the molecu-
lar weight My,) also increases. As expected, this disturbance
does not causes major problems to the control system. The, .
MPC control results in good regulation of the outputs as mgthat for the system representedl_l), the fault estimation
shown inFig. 8 where it is observed that inpus was more  Using full-order UIFDO can be obtained by

demanding, which is rather obviously justified. The profiles }‘1(1() = (E0)T[3(k + 1) — A%(k) — Bu(k)] (32)

of Qs andM,y are also presented.

A fault diagnosis system based on the full-order UIFDO wherex' = T~1%, andZis the estimated state of the UIFDO.
was also implemented for this process. The performanceThus, the full-order system requires the state transformation
of the full-order system was similar to the performance of using the inverse of matrik, which cannot be computed ade-
reduced-order system, with respect to fault detection and iso-quately if T is ill-conditioned. This problem appears in the
lation. However, the full-order system did not converge when polymerization process, when the linearized process model
estimating the size of fault. This can be explained by observ- is computed around the middle operating point. On the other

Fig. 7. Estimation of faultf; (+0.5KinTs).
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hand, by using the reduced-order UIFDO, the SVD approach structures in Petrobras refineri&8]. The nominal steady-
improves in a natural way the condition number of the esti- state operational conditions are showTable 4 The model
mation problem, besides not requiring the transformation of equations and process parameters are here omitted but they
states to estimate the fault. can be found in Moro and OdlodR2].
The performance of a FCC process highly depends on the
selected control structure. In this paper, the control structure
5. Industrial fluid catalytic cracking (FCC) unit is based on the original version of the MPC system proposed
for the FCC unit of the REVAP refinery. From this scheme
In a modern oil refinery, the most critical component, is we consider only a 4 4 MIMO control system, where the
the fluid catalytic cracking (FCC) unit. The FCC unitinvolves inputs or manipulated variables avg; uz, us andug. The out-
a nonlinear and multivariable process, with many cross- puts or controlled variables ang, y», y3 andy,. The control
couplings, subject to a number of operational constraints andobjective is stability rather economic, i.e. to minimize distur-
working at high temperatures. The extent of potential losses bance and interaction effects and to keep the operation point
due to unexpected faults in a FCC unit is enormous. As the as close as possible to its nominal values, where, usually,
FCC unit involves high temperatures and the flow of solid optimal operation conditions lie.
catalyst at high velocities, sticking of control valves and ero- ~ The controller is also the IHMPC of Rodrigues and Odloak
sion in measuring instruments are more likely to occur than [20]. It is based on the transfer function model presented
in most of the process units of the oil refinery. Thus, unex- in Table 5 In the implementation of the IHMPC controller
pected faults in the MPC control system of the FCC unit are simulated here, the sampling timeTiss 3min and the con-
also more likely to occur than in the control systems of other trol horizon ism=4. Other controller tuning parameters are
process units. omitted.

5.1. Dynamic process model and control system 5.2. Fault diagnosis system

A simplified schematic diagram of this process is shown  Several fault diagnosis systems have been applied to the
in Fig. 9. Moro and Odloak22] provide an extensive mathe- FCC unit. However, these diagnosis systems are mainly based
matical model of this process, validated with industrial data, on data-driven approaches. Pranatyasto and[2th have
which has become a standard for validation of FCC control developed a fault detection system for the FCC sensors

high pressure
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products (cracked gas)

turbine

Main Fractionator

RISER

REGENERATOR

| . steam

u6

A
- ¢ o
g b S L g
P L 1 e |
E ~ turbine :L Fos heavy ol

T
air
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Fig. 9. FCC Reactor-regenerator system.

fuel gas
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Table 4
Nominal steady-state operational conditions for the FCC unit

lowing structure:

Variable description Tag Value

%(k 4+ 1) = AX(k) + Bu(k) + Rif

Input variables

Total combustion air flow rate (t/h) up 221 y(k) = Cx(k) + Ra.f (33)
Regenerated catalyst valve position (%) up 82

Total oil feed flowrate (gasoil + deasphalted heavy uz 9700 . fa

oil) (m3/d) where feRM<1, f= eRPY(p=m+1),
Temperature of the total oil feed) Ug 235 fs

Flue gas flow rate valve position (%) us 63 facR"™*1 denotes the vector of actuator faultg,e R/*1
Spent catalyst valve position (%) o U 73 denotes the vector of sensor faul®, = [B0,;] € R"*?
Flow of steam to the gas compressor Turbine Uy & and Ry = [0;,nI;] € RI*P are the actuator and sensor fault
driver valve position (%) distributi ; ivel

Combustion air temperatured) U 190 istribution matrices respectively. -

First stage/feed ratio of air flow rate (%) Ug 90.72 Here, we assume that the probability of two or more faults

o . to occur at the same time is negligible. Thus, the model
utput variables

Temperature of the regenerator first stage denseys 670.14 defined in(33) can be written for the case of actuator faults
phase {C) as follows:

Temperature of the regenerator second stagey» 700.88

dense phaseC) ~ _ A T B. £ B n

Estimated cracking reaction severity (%) Va 775 Xk + 1) = Ax(k) + Bu(k) + Bifi + [ Onxt 1

Riser (reactor) temperatureQ) Va 542.2 y(k) — 6’3((/() (34)
Ap between reactor and regenerator (kgfgm Vs 0.65

Catalyst inventory in the reactor (t) Y6 90 - 1; . — 1
Pressure at the wet gas compressor (kghjem 7 1.0 whereB; € R"** is theith column of matrix, B R (n=1)
Temperature of the regenerator first stage dilute yg 704.39 corresponds to matrik without theith column, f; e R is the
phase {C) , ith component of vectarand f € R(?~1*1 corresponds to
;ﬁzsze{gt)ure of the regenerator general dilute yo 697.53 vectorf without theith element.

Analogously, for sensor faultgmy; (1 < j <I) system
(33) can be written as follows:

following the multivariate statistical principal component . . . _
analysis (PCA) method. Vedam and Venkatasubramaniamx(k + 1) = Ax(k) + Bu(k) +[B  Oux¢-1l/f,
[25] introduced PCA-SDG (signed digraphs) fault diagno- . - =
sis approach andR6] developed a recursive partial least k) = CX(K) + L ftj + [0 111 (35)
squares (PLS) method to detect faults in a FCC unit. Sebzalli _ ) ) ) )
and Wand27] applied PCA-Fuzzy clustering fault diagnosis  Where /; cR*is the jth column of the identity matrix
approach to the FCC main fractionator. The main disadvan-/: 1 R~ the identity matrix without columnj,
tage of these methods is that they need a large amount offm+; € R the (m+j)th component of vectorf and
plant data that are collected along a quite large window of / € R?~2*! is obtained from vectof by removing the
operating time and are used to construct a statistical model(M +])th component.
ofthe process. This new model is not the same as the one used AS discussed by Park et §28], sensor faults can be also
in the MPC controller to predict the system output. Here, the represented by actuator faults. For this purpose, assume that
same model is used both in the MPC controller and in the @ random walk model describes the dynamics of the sensor
fault diagnosis system. fault:

The transfer function matrix model shown Table 5is
transformed into a modified state-space model with the fol- fm+(k) = fm4 (k) + T(k)

Table 5
FCC unit transfer function matrix model
Uy us Ug Ug
0.0661s + 0.0018 —1073(0.785% + 0.0425) 0.0271s + 0.016 45.3896 + 7.9639
N s2 4 0.042% + 0.0019 52 4 0.0434 + 0.0022 52+ 0.0561s + 0.0033 s2 4+ 1.461% + 0.0757
0.0730% 4 0.0020 —103(0.693% + 0.0430) 0.0256s + 0.015 —44.3671s — 0.2308
y2 52 4 0.0421s + 0.0019 524 0.0393 + 0.0023 52 4 0.0504 + 0.0032 524 0.321% + 0.0195
0.0123 + 0.0025 —1.5 x 1073(0.1082 + 0.0032) 0.0181s + 0.0039 —0.2655 — 0.0086
ya s2 4 0.6546 + 0.0231 52 +0.033% + 0.0009 52 + 0.3455 + 0.0409 s2 4+ 0.0376 + 0.0028
0.021% + 0.0008 —1.25 x 1073(0.6931s + 0.0136) 0.065% + 0.0096 —3.135%: — 0.0568
ya s2 4 0.0400 + 0.0016 524 0.033% + 0.0009 524 0.4273% 4 0.0188 s2 4 0.07245 + 0.0043
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Fig. 10. Residual responses for fagli (—5% in actuator 1).

augmented system is obtained as follows: described below. The algorithm was also tested for all the
other possible scenarios corresponding to a single fault and
Sk + 1) A Oy %(k) the obtained performances were similar to the ones presented
= here.
Sk + D] O 1| | i) o
B 1 5.2.1. Fault scenario 1
+t 1o u(k) + T &(k) The fault is represented by a 5% decrease in actuator 1
1xm (fuy), Occurring att=100min. In this case, residua, is
4 B Onx(l—l) f, > i r r . ‘ ‘
O1xm  O1x(-1)
0 -
~ X(k)
yk)y=|[C I; (36) ol |
€l g, j(k) =7
<
24 T
Observe that, for actuator or sensor fault, the faulty process =

10

(o2}

[
\
\
\
\
|
models(34)36) have the same state-space structure as EQ.: }
Q). |
In this case study, the fault diagnosis system supervises \
inputsus, us, ug andug, and outputs;; andy, of the FCC }
MPC system. A bank of six full-order UIFDOs (Eq®) and RealfaultL j{ﬁ J"“‘mx
(4)) is designed in a GOS scheme. The first four residuals, -12} L 1
for actuator fault detection, are based on md@d) and the
last two residuals, for sensor fault detection, are based on %986 700 150 200 250 300 350 400

model(33). The static gain of the full-order observers has the Time (min)

formKy = [I; O] T Theresiduals are evaluated accord-
ing Eqg.(30), with N=1 andx =0.1. The performance of the Fig. 11. Estimation of faulff,, (—5% in actuator 1).
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insensitive to the fault and the other residuals are sensitive. 40
Fig. 10shows that the proposed approach is able to detect a5} b
and isolate this fault satisfactorily. The fault magnitude is aol e
adequately estimated as showrig. 11and this is done by

where it can be seen that the temperature in the regenerato |
section is decreased. To compensate this undesirable effec3
the controller supplies a larger amount of combustion air, = o——— | 1
which is not attractive economically. The controller increases 5t
the control signalsi;, uz andug trying to keep the output
variables at their desired values.

Inthe case presented here, actuator fault detectionandiso- "% 56 100 150 200 250 300 850 400
lation is achieved in approximately 10 min and its estimation Time (min)
in 200 min, after the fault occurrence.

T ; . o 05| Real faultr ————F+F ——————— ——————
substituting the state estimatiarpfovided by the observer | i ‘

of the faulty input, into the faulty model defined@5), and < 20f | jPraut estinle ]
rearranging the resulting equation ag32). % 15} I /j _
The effects of this fault on the process are showkign 12, % 10k : IJ |

|

|

I

Fig. 14. Estimation of faulff,, (+5% in sensor 4).

5.2.2. Fault scenario 2
The fault corresponds to a 5% increase in the measurementiser has to be rapidly reduced€ig. 15presents the responses
of sensor 4 f;,), occurring att=100 min.Fig. 13 shows of the manipulated and controlled variables associated with
that residual, is insensitive to this fault while the other the faultin sensor 4. As it can be seen, this fault causes satu-
residuals are sensitive. The magnitude of the faultis estimatedration inuz andus. Moreover, an acceptable control is never
using a dedicated Luenberger observer. The fault estimationachieved with MPC since bias appears in all the outputs. For
isillustrated inFig. 14where itis indicated that the estimation this fault, the complete detection and isolation is obtained in
tends to the correct value of the fault. approximately 20 min, while its estimation occurs only about
This faulty scenario is unsafe to the FCC operation, as it 200 min, after the fault occurrence.
may cause an undesirable breakdown of the production. To Itisinteresting to mention that, for the FCC process exam-
revert this situation the temperature of the inflow feed of the ple, fault diagnosis systems based on the full-order UIFDO
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Fig. 15. Inputs and controlled outputs responses for fAyl(+5% in sensor 4).
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